Главный редуктор вертолета
Частота вращения газовых турбин современных ТВД лежит в пределах от 6000 до 17000 об/мин (в маломощных двигателях и выше). Для получения наибольшего КПД НВ на расчетном режиме полета вертолета частота вращения НВ должна быть значительно меньше частоты вращения газовой турбины, что достигается с помощью ГР.
Редуктор может быть источником возникновения крутильных колебаний валов, т.к. в колесах всегда имеются ошибки в шаге зубьев, а также деформации зубьев под нагрузкой, отчего изменяются угловые скорости валов. Уменьшить возбуждение этих колебаний можно повышением коэффициента перекрытия в зацеплении, увеличением точности изготовления зубчатых колес и специальным исправлением профиля зубьев.
Размеры всех шестерней, подшипников и валов ГР определяются в основном силами, зависящими от передаваемых редуктором крутящих моментов. Поэтому масса ГР рассчитывается по формуле
Коэффициент к гр можно считать сопоставимым для редукторов одного размера, сходных схем и с близкими значениями передаточных отношений. Из анализа следует, что с уменьшением передаваемого редуктором крутящего момента весовой коэффициент к увеличивается. Это объясняется тем, что толщины стенок основных деталей у малых редукторов оказываются относительно больше как вследствие технологических трудностей при изготовлении деталей с очень малыми толщинами стенок, так и по соображениям обеспечения необходимой жесткости и статической устойчивости стенок. Из-за этого масса деталей малых редукторов получается относительно выше. Чтобы как-то уменьшить этот эффект, такие редукторы целесообразно делать по более простым схемам, в частности, с передачей выходного крутящего момента по меньшему числу точек зацепления.
По кинематическим схемам механизмы редуктора можно разделить на три группы: с простыми зубчатыми передачами-, с планетарными передачами, имеющими одинарные и двойные сателлиты; со смешанными передачами, механизмы которых имеют простую и планетарную передачи. Чтобы предупредить большие напряжения в зубьях простой передачи, необходимо устанавливать несколько
переборов, располагая их равномерно по окружности. При этом необходимо на каждом переборе иметь муфту или упругий элемент, который дает возможность собрать передачу с гарантированными зазорами и обеспечить равномерную нагрузку всех переборов.
В случае комбинированного редуктора рационально использовать планетарную передачу во второй ступени, что позволяет уменьшить частоту вращения поводка и центробежные силы, нагружающие подшипники сателлитов.
На 4.3.1 приведена кинематическая схема ГР вертолета Ми-26. Создание ГР для передачи на НВ мощности от двух ТВД, равной 22000 л.с., связано с решением ряда сложных технических и технологических проблем. Эта задача была успешно решена Г.П. Смирновым, инженером Московского вертолетного завода (МВЗ) им. М.Л. Миля.
Конструктивной особенностью ГР ВР-26 является большое передаточное число в последней ступени редукции. Впервые в практике мирового вертолетостроения в качестве последней ступени редукции была применена обычная эвольвентная зубчатая передача с большим передаточным числом (i= 8,76). Редуктор имеет модульную конструкцию. Отдельные его модули: шаровая опора двигателей, пластинчатые компенсирующие муфты, муфты свободного хода, передние и задние конические редукторы, привод РВ, верхний редуктор (две последние ступени редукции основной кинематической цепи), маслоотстойник и маслоагрегат выполнены в виде самостоятельных узлов в собственных корпусах. Они соединяются между собой фланцами и шлицевыми валами. В принципе, каждый модуль может изготавливаться, испытываться, изменяться конструктивно и применяться в других конструкциях. Модульность конструкции применительно к редуктору таких размеров упрощает изготовление и доводку, уменьшает массу.
Верхний редуктор состоит из корпуса, в котором на двух подшипниковых опорах смонтирован вал НВ. Непосредственно на этом валу при помощи двух ступиц закреплены два ведомых косозубых зубчатых колеса, с каждым из которых находятся в зацеплении восемь ведущих колес. Зубчатые колеса верхнего и нижнего ряда имеют противоположные направления наклона зубьев. Каждое ведущее колесо смонтировано на двух роликовых подшипниках, не имеющих упорных буртов на внутренних кольцах. Осевые усилия, возникающие на ведущих колесах последней ступени, имеют противоположное направление и воспринимаются трубчатыми стяжками.
В результате получается разновидность шевронной зубчатой передачи, у которой каждая половина ведущего колеса смонтирована в своих подшипниках. Возможность свободного осевого перемещения групп зубчатых колес, состоящих из двух ведущих колес последней ступени и ведомого колеса второй ступени, позволяет осуществить равномерное деление мощности между верхним и нижним ведущими колесами последней ступени. Вал НВ в своей нижней части выполнен тонкостенным бочкообразным, что позволяет придать ему необходимую прочность и жесткость при минимальной массе.
Корпус верхнего редуктора воспринимает все нагрузки, идущие от НВ, в т.ч. крутящий момент, и передает их на фюзеляж вертолета через восьми стержневую подредукторную раму. В средней части корпус имеет пояс крепления с шестью фланцами, к которым крепятся фланцы рамы.
Модульность конструкции упрощает проблему создания требуемой жесткости корпусов. Все зубчатые колеса имеют простые и технологичные формы. Чтобы не усложнять изготовление колес, введены традиционные фланцевые разъемы.
Одной из основных особенностей главного редуктора ВР-26 является обеспечение равномерного распределения мощности по потокам за счет шлицевых валов (рессор) с малой крутильной жесткостью. Деление мощности в последней ступени редукции обеспечивается за счет противоположного по направлению наклона зубьев в верхнем и нижнем рядах зубчатых колес. Деление мощности в первой и второй ступени редукции осуществляется за счет малой крутильной жесткости рессор, главным образом, рессор последней ступени редукции. В конструкции соблюдается равенство крутильной жесткости в параллельных потоках.
Требуемая равномерность распределения нагрузки с учетом боковых зазоров в зубчатых передачах и шлицевых соединениях, зазоров в подшипниках обеспечивается в процессе сборки редуктора за счет использования ряда конструктивных и технологических приемов.
Крутильная жесткость основной кинематической цепи и привода РВ, боковые зазоры в зубчатых зацеплениях и шлицевых соединениях его привода подобраны соответствующим образом. В результате при работе одного двигателя на максимальном взлетном режиме часть мощности через привод РВ идет на конические редукторы противоположной стороны, разгружая конические редукторы на стороне работающего двигателя.
Зубчатые колеса ВР-26 изготавливаются из стали 12Х2Н4А-Ш, подвергаются цементации и закалке. В качестве финишной обработки применяется шлифование.
Корпусные детали верхнего редуктора, диаметр которого 2000 мм, изготавливаются методом штамповки из высокопрочного алюминиевого сплава АКЧ-1 с последующей обработкой на фрезерных станках. Корпусные детали остальных узлов изготавливаются литьем из сплава MJI-5. Ступицы ведомых шестерен верхнего редуктора изготавливаются штамповкой из титанового сплава ВТЗ-1. Валы и рессоры выполняются из стали 40Х2Н2МА, азотируются.
Много поточность, модульность конструкции подобных ГР создают определенные компоновочные преимущества по сравнению с планетарными редукторами.
В результате перечисленных конструктивно-кинематических решений удельная масса ГР ВР-26 на единицу взлетного крутящего момента существенно меньше, чем у ГР вертолета Ми-6, выполненного по четырехступенчатой кинематической схеме.
Нагрузки с корпуса ГР передаются на соответствующие силовые элементы фюзеляжа обычно при помощи стержневой системы.
На 4.3.2 приведен один из вариантов КСС рамы крепления ГР.