Маневренность самолета
Прочие
Маневренность самолета

Маневренность самолета. Управляемость и устойчивость самолета.

 

Маневренность самолета — это его способность изменять за определенный промежуток времени свое положение в пространстве (направление, скорость и высоту полета), т. е. совершать эволюции, маневрировать в воздухе. Маневренные свойства самолета зависят от ряда факторов: аэродинамические и прочностные ограничения, располагаемая тяга двигателей, полетный вес и др. Эксплуатационная маневренность самолета определяется его управляемостью, приемистостью двигателей, быстротой включения реверса тяги, быстротой отклонения закрылков, щитков, спойлеров.

Управляемость самолета — это его способность изменять режим

полета по воле пилота (при отклонении им рычагов управления). При этом движения рычагов управления должны быть простыми и сопровождаться небольшими, но хорошо ощущаемыми на них усилиями.

Устойчивость самолета — способность его самостоятельно, без вмешательства пилота, сохранять заданный режим полета и возвращаться к исходному равновесию после прекращения действия внешних возмущений. Иначе говоря, устойчивость, по определению Н. Е. Жуковского, можно понимать как «прочность» равновесия.

Самолет должен быть устойчив относительно всех трех осей. Хорошие характеристики устойчивости необходимы для лучшей управляемости самолета. У устойчивого самолета более простые движения рычагами управления и меньше общая затрата нервной и мускульной энергии пилота на управление.

Для удобства рассмотрения устойчивость условно подразделяют на статическую устойчивость — свойство самолета обнаруживать тенденцию к восстановлению нарушенного равновесия в начальный момент времени и динамическую устойчивость — свойство самолета без вмешательства пилота восстанавливать исходный режим полета через некоторое время после прекращения действия возмущения.

Наличие статической устойчивости является необходимым, но недостаточным условием динамической устойчивости самолета.

Маневренность самолета 2

Продольную статическую устойчивость разделяют на устойчивость по перегрузке — способность самолета самостоятельно, без вмешательства пилота, сохранять перегрузку исходного режима полета и на устойчивость по скорости — способность самолета самостоятельно, без вмешательства пилота, сохранять скорость исходного режима полета.

В случае полета со скольжением у самолета возникают путевой (относительно оси О у) и поперечный (относительно оси Олс) статические моменты. У самолета, обладающего путевой (флюгерной) устойчивостью, возникающий при скольжении момент стремится уничтожить скольжение. У поперечно устойчивого самолета возникающий при скольжении момент стремится накренить самолет в сторону, обратную скольжению. Накренение самолета вызывает разворот в сторону крена и способствует, таким образом, уничтожению скольжения.

Путевая устойчивость самолета обеспечивается в основном вертикальным оперением. Чем больше площадь всех вертикальных поверхностей (киль, форкиль, шайбы, гребни и др.) и чем больше плечо этих поверхностей до центра тяжести самолета, тем лучше путевая устойчивость самолета.

Поперечная устойчивость самолета обеспечивается углом поперечного V крыла и высотой киля. Чем больше угол поперечного V крыла и чем выше киль, тем лучше поперечная устойчивость самолета. Увеличение стреловидности крыла также способствует повышению поперечной устойчивости самолета.

У самолетов со стреловидными крыльями поперечная устойчивость в значительной мере зависит от угла атаки, возрастая по мере его увеличения.

Самолет с большой степенью поперечной устойчивости отвечает энергичным кренением на возникновение скольжения. При избыточной поперечной устойчивости существенно усложняется пилотирование в случае полета в болтанку и при возникновении несимметричной тяги.

Однако пилот в основном оценивает не проявление поперечной и путевой устойчивости в отдельности, а их совокупность. Одновременное проявление путевой и поперечной устойчивости рассматривается как боковая устойчивость самолета. Боковая устойчивость предусматривает определенную зависимость между путевой и поперечной устойчивостью. 

При больших значениях величины у, поведение самолета оценивается как неудовлетворительное, т. е. возникновение скольжения сопровождается резким кренением и, как следствие, разбалтыванием самолета. Самолет попеременно кренится и рыскает из стороны в сторону. 

Хорда условного прямоугольного крыла, имеющего при равных углах атаки одинаковые с крылом рассматриваемого самолета величины полной аэродинамической силы и продольного момента, называется средней аэродинамической хордой (САХ). Величина и положение САХ для каждого самолета указаны в техническом описании.

Так как самолет в воздухе вращается вокруг центра тяжести, то положение центра тяжести (центровка) оказывает существенное влияние

Выход центровки за установленный для данного типа самолета диапазон недопустим. Чрезмерное смещение центровки назад (за установленные ограничения) вызовет сначала ухудшение устойчивости самолета по перегрузке, а затем может привести к появлению неустойчивости. Однако и излишне передняя центровка затрудняет управляемость самолета и может привести к «нехватке руля» при посадке.

Блог и авторские статьи

наверх