Дистанционное зондирование
Преимущества дистанционного зондирования
Дистанционным зондированием называют получение информации об объектах без вхождения с ними в физический контакт. Однако это определение является слишком широким.
Поэтому введем некоторые ограничения, позволяющие конкретизировать особенности понятия «дистанционное зондирование», и в частности, важного для обеспечения безопасности авиации понятия дистанционного зондирования атмосферы. Во-первых, предполагают, что информацию получают с помощью технических средств.
Во-вторых, речь идет об объектах, находящихся на значительных расстояниях от технических средств, что принципиально отличает ДЗ от других научно-технических направлений, таких как неразрушающий контроль материалов и изделий, медицинская диагностика и т. п. Добавим, что ДЗ использует косвенные методы измерения.
Дистанционное зондирование включает исследования атмосферы и земной поверхности, в последнее время развились и подповерхностные методы ДЗ. Применение методов и средств дистанционного неконтактного получения информации о состоянии и параметрах тропосферы способствует безопасности авиации.
Главные преимущества ДЗ - это высокая скорость получения данных о больших объемах атмосферы (или о больших площадях земной поверхности), а также возможность получения информации об объектах, практически недоступных для исследования другими способами. С традиционными метеорологическими измерениями в верхней атмосфере, выполняемыми с помощью шаров-зондов, широко и систематически применяются сложные методы ДЗ.
Дистанционное зондирование стоит довольно дорого, особенно космическое. Несмотря на это, сравнительный анализ затрат и получаемых результатов доказывает высокую экономическую эффективность зондирования. Кроме того, использование данных зондирования, в частности, метеорологических спутников, наземных и бортовых радиолокационных средств, сохранило тысячи человеческих жизней за счет предупреждения стихийных бедствий и избежания опасных метеорологических явлений. Поэтому научно-исследовательская. экспериментальная, конструкторская и оперативная деятельность в области ДЗ, которая интенсивно развивается в ведущих странах мира, является полностью оправданной.
Объекты и применение дистанционного зондирования
Основными объектами ДЗ являются:
-
погода и климат (осадки, облака, ветер, турбулентность, излучения);
-
элементы окружающей среды (аэрозоли, газы, электричество атмосферы, перенос, т. е. перераспределение в атмосфере той или иной субстанции);
-
океаны и моря (морское волнение, течения, количество воды, лед);
-
земная поверхность (растительность, геологические исследования, изучения ресурсов, высото-метрия).
Информация, получаемая средствами ДЗ, необходима для многих отраслей науки, техники и экономики. Количество потенциальных потребителей этой информации постоянно растет.
С целью обеспечения безопасности полетов ДЗ используется:
-
метеорологией, климатологией и физикой атмосферы (оперативные данные для прогноза погоды, определения профиля температуры, давления и содержания водяного пара в атмосфере, измерения скорости ветра и т. п.);
-
спутниковой навигацией, связью, в радиолокационных наблюдениях и радионавигации (эти области требуют данных об условиях распространения радиоволн, которые оперативно получаются средствами ДЗ);
-
авиацией, например, прогноз метеоусловий в аэропортах и на авиатрассах, оперативное обнаружение опасных метеорологических явлений, таких как град, гроза, турбулентность, сдвиг ветра, микровзрыв и обледенение.
Кроме того, важными являются такие области, в которых летательные аппараты используются в качестве носителей средств ДЗ:
-
гидрология, включая оценку и управление водными ресурсами, прогнозирование таяния снегов, предупреждения о паводках;
-
аграрные области (прогноз и управление погодой, контроль типа, распространения и состояния растительного покрова, построение карт типов грунтов, определение влажности, предупреждение градобитий, прогноз урожая);
-
экология (контроль загрязнения атмосферы и земной поверхности);
-
океанография (например, измерение температуры морской поверхности, исследования океанических течений и спектров морского волнения);
-
гляциология (например, отображение распространения и движения ледовых щитов и морского льда, определения возможности морского судоходства в ледовых условиях);
-
геология, геоморфология и геодезия (например, идентификация типа горных пород, локализация геологических дефектов и аномалий, измерение
-
параметров Земли и наблюдение тектонического движения);
-
топография и картография (в частности, получение точных данных о высоте и привязке их к данной системе координат, производство карт и внесение изменений в них);
-
контроль стихийных бедствий (в том числе контроль объема паводков, предупреждение о песчаных и пылевых бурях, лавинах, оползнях, определение маршрутов лавин и т. п.);
-
планирование в других технических приложениях (например, инвентаризация землепользования и контроль изменений, оценка земельных ресурсов, наблюдение за движением транспорта);
-
военные применения (контроль передвижения техники и воинских формирований, оценка местности).
Системы и методы дистанционного зондирования
Классификация систем ДЗ основывается на привычных для специалистов по радиолокации отличиях между активными и пассивными системами. Активные системы облучают исследуемую среду электромагнитным излучением (ЭМИ), которое обеспечивает система ДЗ, т. е. в этом случае средство ДЗ генерирует электромагнитную энергию и излучает ее в направлении исследуемого объекта. Пассивные системы воспринимают ЭМИ от исследуемого объекта естественным образом. Это может быть, как собственное ЭМИ, возникающее в самом объекте зондирования, например, тепловое излучение, так и рассеянное ЭМИ какого-либо естественного внешнего источника, например, солнечного излучения. Преимущества и недостатки каждого из двух указанных типов систем ДЗ (активные и пассивные) определяются рядом факторов. Например, пассивная система практически неприменима в тех случаях, когда отсутствует достаточно интенсивное собственное излучение исследуемых объектов в заданном диапазоне длин волн. С другой стороны, активная система становится технически невыполнимой, если излучаемая мощность, необходимая для получения достаточного отраженного сигнала, оказывается слишком большой.
В ряде случаев для получения необходимой информации желательно знать точные параметры излучаемого сигнала, чтобы обеспечить какие-то специальные возможности анализа, например, измерение доплеровского сдвига частоты отраженного сигнала для оценки движения цели по отношению датчика (приемника) или изменения поляризации отраженного сигнала относительно зондирующего сигнала. Как и любые информационно-измерительные системы, которые используют ЭМИ, системы ДЗ различаются по диапазонам частот электромагнитных колебаний, например, ультрафиолетовые, видимого света, инфракрасные, миллиметровые, сантиметровые, дециметровые.
Рассмотрим ДЗ атмосферы, в частности, тропосферы - той части земной атмосферы, которая непосредственно прилегает к поверхности Земли. Тропосфера простирается до высот 10-15 км, а в тропических широтах - до 18 км. Использование ДЗ с целью метеорологического обеспечения безопасности полетов требует внимания к системам, которые рассматривают атмосферу как трехмерный, объемно распределенный объект, и позволяют получать профили атмосферы в разных направлениях зондирования.
Объектами зондирования, или целями, могут быть флюктуации, которые естественно происходят в атмосфере, а также фиксированные объекты на определенном расстоянии от средства ДЗ. Важно понять суть разных видов взаимодействия между ЭМИ и атмосферой. Разные виды такого взаимодействия - это удобный способ классификации методов ДЗ. Они основываются на затухании, рассеянии и излучении электромагнитных колебаний объектами зондирования. Схемы основных процессов взаимодействия электромагнитных колебаний с атмосферными неоднородностями применительно к задачам ДЗ.
В первом случае излучение от заданного известного источника (передатчика) поступает на вход приемника после того, как оно прошло через исследуемый объект. Оценивается величина ослабления излучения на трассе распространения от передатчика к приемнику, при этом предполагается, что величина потерь электромагнитной энергии при прохождении через объект связана со свойствами этого объекта. Причиной потерь может быть поглощение или комбинация поглощения и рассеяния, что лежит в основе получения информации об объекте. Много методов ДЗ по сути основаны на таком подходе.
Во втором случае, когда источник сам является источником излучения, обычно возникает задача измерения инфракрасной или/и микроволновой эмиссии, что используется для получения информации о тепловой структуре атмосферы и других ее свойствах. Кроме того, такой подход характерен для исследования молниевого разряда на основе его собственного радиоизлучения и для обнаружения грозы на больших расстояниях.
Третий случай состоит в использовании рассеяния электромагнитных колебаний атмосферным образованием для получения информации о нем. На свойстве рассеяния основаны различные способы ДЗ. Один из них характеризуется тем, что исследуемая среда освещается каким-то источником некогерентного излучения, например, солнечным светом или инфракрасным излучением, которое исходит от поверхности Земли, а датчик средства ДЗ принимает рассеянное объектом излучение. Другой - тем, что объект облучается специальным искусственным (когерентным или некогерентным) источником, например, лазером или источником с длиной волны от дециметров до миллиметров (как в случае радиолокатора). Это излучение рассеивается объектом, обнаруживается приемником и используется для извлечения информации о рассеивающем объекте.
Заметим, что первый из рассмотренных случаев соответствует активной системе зондирования, второй - пассивной, а третий реализуется как в пассивном, так и в активном вариантах.
Активная система ДЗ может быть моно-статической, когда передатчик и приемник средства ДЗ размещаются на одной позиции, бистатической, или даже мульти-статической, когда система состоит из одного или нескольких передатчиков и нескольких приемников, расположенных в разных позициях.
Классификация не будет достаточно полной, если не указать основные технические средства ДЗ: радиолокаторы, радиометры, лидеры и другие устройства или системы, используемые в качестве датчиков ДЗ.
Изучение атмосферы с помощью ДЗ включает использования приборов, устанавливаемых на искусственных спутниках Земли и орбитальных станциях, самолетах, ракетах, воздушных шарах, а также средствами, размещенными на земле. Чаще всего носителями средств ДЗ являются спутники, самолеты и платформы наземного базирования.
Обратные задачи
Задачи ДЗ - это обратные задачи, т. е. такие, при решении которых вынуждены идти от результата к причине. К ним относятся все задачи обработки и интерпретации данных наблюдений. Теория обратных задач - самостоятельная математическая дисциплина, а ДЗ атмосферы - лишь одно из научно-технических направлений, для которых теория обратных задач является важной. В прикладном аспекте необходимо хорошо понимать, как ЭМИ взаимодействует с исследуемыми атмосферными объектами, формируя сигналы, которые используются для получения информации об атмосфере. В идеальном случае между измеренным параметром сигнала и оцениваемой характеристикой атмосферы существует взаимно однозначное соответствие. Но в реальных ситуациях всегда возникают характерные для обратных задач проблемы.
Рассмотрим простой пример, который относится к пассивному зондированию атмосферы. Предположим, что поглощающий газ в атмосфере характеризуется собственным излучением, зависящим от температуры газа. Это излучение воспринимается датчиком, расположенным на спутнике. Предположим также, что существует связь между длиной волны излучения и температурой, а температура зависит от высоты слоя атмосферы. Тогда знание взаимосвязи между интенсивностью излучения, длиной волны излучения и температурой газа дает способ оценки температуры атмосферного газа как функции длины волны и, следовательно, высоты. На самом деле ситуация намного сложнее по сравнению с описанным идеальным случаем. Излучение на заданной длине волны не исходит из одного слоя на соответствующей высоте, а распределено по толще атмосферы, поэтому нет взаимно однозначного соответствия между длиной волны и высотой, как это предполагалось для идеального случая, что вызывает размытость этой связи. Этот пример является типичным для многих обратных задач, где границы интегрирования зависят от особенностей конкретной задачи. Это уравнение известно, как интегральное уравнение Фредгольма первого рода. Оно характеризуется тем, что границы интеграла фиксированные, появляется только в подынтегральном выражении. Функция называется ядром или функцией ядра уравнения.
Разные задачи ДЗ сводятся к уравнению или к подобным уравнениям. Для решения таких задач необходимо выполнить обратное преобразование, чтобы по результатам измерений g. получить распределение. Такие обратные задачи называются некорректными, или некорректно поставленными задачами. Их решение ассоциировано с преодолением трех следующих трудностей. В принципе решение некорректной задачи может оказаться математически несуществующим, неоднозначным или неустойчивым. Отсутствие решения
С точки зрения ДЗ, опасные метеорологические явления (ОМЯ) можно рассматривать как объемно распределенные объекты, которые занимают определенные пространственные зоны в облачности или в безоблачной атмосфере (ясном небе). Физические признаки внешнего проявления ОМЯ, как правило, описываются параметрами, характеризующими интенсивность ОМЯ и которые в принципе можно измерять, например, параметры скорости ветра, напряженности электрического и магнитного полей, интенсивность осадков. Физические параметры ОМЯ рассмотрены.
Районы атмосферы, в которых параметры, характеризующие интенсивность ОМЯ, превышают некоторый заданный уровень, называются зонами ОМЯ. Процесс обнаружения ОМЯ и отнесение их зон к определенным пространственным координатам в заданное время на основании результатов ДЗ называется локализацией зон ОМЯ.
Таким образом, в процессе локализации средствами микроволнового ДЗ атмосферы обнаруживают зоны ОМЯ и определяют их местоположение в заданной системе координат. В ряде случаев можно оценить также степень интенсивности ОМЯ.
Локализация опасных для полетов зон бортовыми радиолокационными средствами - это оперативное обнаружение и определение местоположения с помощью метео-навигационных радиолокаторов (МНРЛС) и других боровых устройств, которые могут быть сопряжены с МНРЛС.